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1 Purpose

The purpose of this document is to show how and how well the correction algorithm for the inhomogeneous slit
illumination works. A brief overview of the results leading up to change in the GDPS is given. Then the
workings of the correction algorithm are explained. Subsequently an overview of how well the correction works
is given. At the end some suggestions for further work in this area are given.

2 Table of contents

| PURPOSE 3
D TABLE OF CONTENTS 3

3 REFERENCED DOCUMENTS 3
INTRODUCTION 4

HOW TO CORRECT FOR THE WAVELENGTH SHIFTS? 4

=g.1 WHERE IN THE PROCESSING STREAM ... eeeissoeoiseoeeoesseeesseeeessseeeessseeisessseeenssssesnsssnesesseneessssssessenesneseenees )
2 CAN WE USE CALIBRATED DATA? ......utuvtiiieeeeeeiiteeeeeeeeeeeeetaeeeeeeeeeeeetaareaeeeeeeettssseeeseeeeesissseseseseesssssessseeeeesnssesens 4
5.3 DERIVING CORRECTION PARAMETERS. .....ccceitiiiuurerteeeeeeiitreeeeeeeeeiissereeeeeesssssssseessesssmssssesseessomsssssssseessommsssssees 4

b .4 STRUCTURE IN THE ROW DIRECTION. .......cceiiuueeeiiuueeeeieeeeeieueeeeeeeeeeseueeesetseesssaseesseseeesssseesssasessssseesssssseesssnees 5
%T_Fmo OPF PARAMETERS wooovvooooooooooossoooss oo oo oo oooss oo oooosoees oo ooers oo 5
[ b.6 CORRECTION IN PRACTICE .....oeciiuvteeiiteieeeeeteeeeeeeteeeeeeeeeeeeeeesesaaeeeasaseesesaseessssseeesesssessnssseesssseeesssseesssaseessnneeeens 6
| 7P RESULTS 7|
[ b.1 SWATH ANGLE DEPENDENCE .......cccvveeeeiteeeeeieeeeeeseseeesseeeseireseeesssessesssssseeisssssssssseissessesisssesssssssssreessssssesssnnes 7]
| H.2 SUMMARY OF RESULTS FOR SWATH DEPENDENCY . ....ccevtttttttttietteeeeeeeeeeeeeseeeeesesereseeessstessssesssssesesssssss. 9
b.3 WAVELENGTH COEFFICIENTS OF HIGHER ORDER. ..........ccuvvveieeeeieiiiueeeeeeeeeseiserereeeeeseeissseeesseesesisreeessessessinsees 11
x! STABILITY IN TIME ......eeecoiicseiiisssssisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnneons 12

7 CONCLUSIONS 15
OUTLOOK 13

3 Referenced documents

. TN-OMIE-KNMI-613, “WP6: Temperature dependence of the wavelength calibration of OMI”, July
2004

. TN-OMIE-KNMI-691, “Wavelength Calibration Issues: Stability along the orbit worse than expected”,
September 2004



$ TN-OMIE-KNMI-692
‘M' Slit inhomogeneity

L Issue 1, March 17, 2005
KNMI M1 o1

4 Introduction

As indicated in the document “Wavelength Calibration Issues: Stability along the orbit worse than expected”
(TN-691), the wavelength scale of the OMI spectra changes rapidly along the orbit. This effect is tentatively
caused by non-homogeneous illumination of the OMI entrance slit in the flight direction (e.g. clouds). It was also
shown that these variations correlate nicely with the change in signal between two integration periods. As a
result, a method was conceived to use the small pixel radiances at one wavelength in the UV2 and VIS channels
to account for these rapid changes in wavelength scale in the wavelength assignment step in the 0-1 data
processor. This method is explained in (TN-691). Consequently it was decided to make a change in the way the
GDPS assigns wavelengths to pixels. Also, in order for this algorithm to work, a new set of OPF parameters was
calculated. After giving a brief overview of how the correction method works, it is shown in this document that
that the algorithm as implemented in the GDPS works as expected.

5 How to correct for the wavelength shifts?

5.1  Where in the processing stream?

In TN-691 two different solutions to the problem were proposed:

1. Correction during the wavelength assignment step.

2. Correction as a post-processing step.
For a while an ad-hoc post-processor was tried out, but it turned out that the first option is the best. It was
decided to update the wavelength assignment algorithm in the GDPS.

5.2 Can we use calibrated data?

A minor difficulty in this approach lies in the determination of the correction parameters that scale the <change
in small pixel radiance> to a <change in wavelength parameters>. The difficulty lies in the fact that in order to
derive these dependencies it was only possible to use the flux-calibrated output of the L1B processor. (In
principle, the debug option of the L1B processor can provide the necessary intermediate results, but this turned
out to be practically unworkable, since output files were getting too large.) However, the problem turns out not
to be serious. The reason for this is that the correction made is based on the relative change of the small pixel
radiances. At the point in the L1B processing where the wavelength assignment is done, the radiometric
conversion still has to take place. However, all the additive signal corrections have been made (e.g. stray light,
dark current and offset correction). So, in effect it makes no difference whether the correction parameters are
derived before or after the radiometric conversion, since scaling the signal will not change its relative variations.

5.3  Deriving correction parameters

The way to derive correction parameters is:
e Modify the OPF such that wavelength calibration is performed for all swath angles and process one
entire orbit.
e Determine for the same orbit (all images, all swath rows) the relative change in the small pixel radiance
per master clock period.
e Divide the former by the latter to obtain the correction parameters.
A number of issues remain to be addressed. First: are the derived parameters valid for the entire orbit and are
they stable between different orbits? It turns out that the answer is yes in both cases. If values derived for the
first half of the orbit are compared with with those for the second half, the differences are sufficiently small. As
an indication two examples are shown for a single orbit, for the first and the second parameters.
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Also, comparing results of two separate orbits shows that the derived parameters are stable in time. So, in order
to improve the statistics and hence lower the noise, the results of a number of different orbits were averaged
when deriving the parameters for the OPF.
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5.4

Structure in the row direction.
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As can be seen in the above figures, there is quite some structure of the derived parameters in the row direction.
From comparing the different orbits and the different sections of the orbit, we know this is not due to poor
statistics. The origin of these row structures is currently unknown. The broad shape in the first parameter could
possibly be understood in terms of decreasing spatial resolution. The more rapid changes in the row direction can
in any case not be attributed to the slit irregularity, as the signals differ between the two channels.
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5.5 From raw data to OPF parameters

As indicated above, there is quite some structure in the row direction of the raw derived parameters. However,
since the origin is currently not understood, we have not taken this fine structure into the OPF, even when the
structures are reproducible. The structures may originate from other imperfections in the OPF parameters. In that
case, it is not wise to correct for it here. Low order polynomials were fitted in the row direction. These
polynomials were expanded to provide unbinned parameters, i.e. parameters for each unbinned row. The main
reason for this is to facilitate incorporation in the OPF and GDPS.

5.6  Correction in practice

At this stage we have a 5x577 matrix that contains the correction parameters for the inhomogeneous slit
illumination. In previous versions of the GDPS, the wavelength assignment was done as follows:

1. Read from the OPF: <Spectral Calibration Coefficients> (copr,) as well as those that
determine the temperature dependence: <Spectral Calibration Coefficients D> (dgprn)
and <Spectral Calibration Coefficients E>(eppr,)-

2. Rebin these by the applicable binning factor.

Calculate the temperature dependence: ¢,(j) =¢,,, () +d,,, (/) AT +e,,, ,(j)- AT?

mp,n

First the relative change in the small pixel radiance must be calculated (Q),
0(j)=2 SMP(j,Last)—SMP(j, First)
1= SMP(j, Last)+ SMP(j, First)

This can only be done in case the number of small pixel column radiances per integration period (NSMP) is at
least 2.

Then, in the same way as the temperature dependence parameters dopr, and eopr, update c, the slit
inhomogeneity correction parameters are rebinned

! b fbinnmg (])

and used to update c,,

C:IEW (j)k,m = cn (j)k,m + Bn (j)k,m ’ Q(])k

So, in short:
1. Check the number of small pixel column radiances per integration period (NSMP). If less than 2, then
raise a flag and make no correction. Exit.
2. Calculate the relative change in the small pixel column radiance: Q.
Rebin the OPF parameters needed for the correction: b OPF.
4. Update the wavelength polynomial parameters c,

W
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6 Results

As a test of the algorithm the following sequence was tested. Take the wavelength assignment of the radiance
spectra and compare it with the result of the wavelength calibration (from the L1B CAL file). This was done for
a number of different orbits, in standard processing mode. This implies that only the central row can be checked,
since the wavelength calibration in standard processing is only done for the central row of the radiance spectra.
In addition, the wavelength calibration was also performed for all rows in the spectrum and compared with the
assignment in the radiance product. These comparisons are made for all sub-channels: UV-1, UV-2 and VIS.

The plots always consist of 4 panels. Top left panel shows the result of the GDPS wavelength assignment. Top
right shows the result of the GDPS wavelength calibration algorithm. Bottom right shows the difference between
those two and the bottom right plots the result of the calibration versus that of the wavelength assignment. This
is mainly to show the correlation.

Note that the wavelength calibration itself is not flawless. But this is the only ‘truth’ we can compare the
assignment to. If the wavelength calibration itself is not more accurate than 0.01 pixel, the assignment, which is
based on the result of the wavelength calibration, is not likely to be more accurate. In any case, it cannot be
checked. This is not in line with what was set out to be done. The whole idea of replacing the wavelength
calibration by a wavelength assignment was based on the assumption that the main parameter driving the
accuracy of the wavelength scale was the temperature of the optical bench. And since the temperature was
expected to vary smoothly over an orbit — as it does — it was expected that using a temperature corrected
assignment would yield more accurate results than individual wavelength calibration results. But this is not the
case. So, in view of the large variations in wavelength scale between two subsequent measurements, it seems
that the accuracy of the assignment cannot be better than that of an individual wavelength calibration result.

6.1 Swath angle dependence

The next few pages illustrate how well the algorithm works for different swath angles. As an illustration, results
for both the central row as well as for more extreme rows are given. For 3 of the 4 panels, the RMS of the signal
is given, both in nanometres and in pixels. The bottom left panel in all cases indicates how well the wavelength
assignment algorithm works. Basically, there are two parameters that give a quick indication of the quality: RMS
and offset. The residual RMS indicates how well the slit correction algorithm works, and the offset shows the
magnitude of the error in the first step of the wavelength assignment, before the slit correction. At the end of the
subsection, an overview of the main quality parameters for all swath angles are given. Note that there is no slit
inhomogeneity correction for the wavelength assignment for the UV-1 channel. The two main reasons for this
are that there are no small-pixel column in the UV-1 channel and that the effect of inhomogeneous slit
illumination is expected to be much smaller than for UV2 and VIS. From the figures below, it can be seen that
this is indeed the case.

Also note that the performance of the correction gets worse at larger swath angles. However, the effect itself is
smaller, as can be seen in the figure below, so that the result is relatively independent of row number. Yet
another interesting feature is that for row 28 in the UV-1 channel a jump in the wavelength calibration occurs. A
physical reason why this should happen is unlikely. It is probably an error in the wavelength calibration
algorithm.

When looking at the figures below we can say that the overall performance of the wavelength calibration appears
to be in good shape after version 7 of the OPF, and in particular that the slit inhomogeneity correction algorithm
work well.
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6.2  Summary of results for swath dependency.

The images below give an impression on how well the algorithm works as a function of swath angle. The left
three panels indicate the level of change over an orbit for 3 different observables: Standard deviation of

e  Wavelength Assignment
e  Wavelength Calibration
e Difference between the two

The top two should contain largely the same signal, and for UV-2 and VIS this is indeed the case. For UV-1 the
standard deviation in the wavelength assignment signal is virtually zero, because no correction for slit
inhomogeneity is made. The bottom of the left panels shows the standard deviation of the difference of the first
two signals. This should be less than 0.01 pixel for UV-2 and VIS and less than 0.02 pixels for UV-1. This is
almost the case, which shows that the requirement on the knowledge of the wavelength scale can be reached.
The right two panels provide different diagnostics. The top right panel shows how the correlation coefficient
between wavelength calibration and wavelength assignment changes as a function of row number. The lower
panel gives the average difference between the two signals. If the steps preceding this correction step are correct,
the average difference should be zero. For the VIS channel there is a clear offset, for the UV channel this offset
is smaller. This will be addressed in a future version of the OPF.
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VIS channel, overall performance, orbit 1265. The standard deviation has been reduced to less than 0.01 pixel.
However, the average difference is still a bit too large.
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UV 2 channel, overall performance, orbit 1265. The standard deviation has been reduced to approximately 0.01
pixel. The average difference is also very close to 0.01 pixel.
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UV1 channel, overall performance, orbit 1265. No reduction in the standard deviation but it is less than 0.02
pixel. Also, the average difference is very close to zero in most cases.

6.3  Wavelength Coefficients of higher order

So far, we have looked at the first polynomial wavelength coefficient. That is, at the wavelength of the reference
column of the sub-channel. In order to see to what extent the higher order coefficients are also influenced by the
inhomogeneous slit illumination, similar four-panel plots as above are shown below, but in this case for the 2™
order term (i.e. the third coefficient). First, we see that on an absolute scale the match between calibration and
assignment is excellent. This means that the first step in the wavelength assignment (before slit inhomogeneity
correction) works well. We also see that in the VIS channel, some of the structure seen in the spectral calibration
is matched by the assignment. The correlation between the two signals is still almost 80 percent. In the UV-2
channel the correlation is close to zero. However, hardly any rapid variations along the orbit are seen in the
spectral calibration result. Therefore, this is the expected result.
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Higher order wavelength coefficients in the UV-2 and VIS channels
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6.4  Stability in time

In the previous paragraph the swath angle dependence of the quality of the wavelength assignment was shown.
In this section the behaviour in time is investigated. When comparing the central row for different orbits we see a
very high degree of similarity in the quality of the residues. A marked difference can be seen for the UV-1,
where orbits 3238 and 3239 crossed the SAA. This is clearly reflected in the RMS difference. No clear effect of
the SAA is seen in the UV-2 or VIS channels. It still has to be studied what causes the erratic behaviour in the
UV-1 channel when flying over the SAA. It could be due to a real shift, or, more likely, as no such shifts are
found in the other two channels, it is due to a problem with the wavelength calibration algorithm. In that case,
the assignment gives better results than the wavelength calibration and there is no cause for concern. However, if
the wavelength shifts are real, the assignment in that case is not better than 0.04 pixel RMS, which is a factor of
2 above the required number.

For most orbits, the RMS difference is less than 0.02 and 0.01 pixel for UV1 and for UV2/VIS, respectively. The
average difference between calibration and assignment is exactly 0 for the UV-2 channel, but for the UV-1 and
VIS channels systematic differences between the two remain. This means that the data field <Spectral
Calibration Coefficients> inthe OPF needs to be adjusted. However, systematic differences between
the early orbits and the more recent ones exist. This may indicate an unknown time dependence of the
wavelength scale. More work is required to examine this effect, but if it is the case then it may be necessary to
update the data field <Spectral Calibration Coefficients> forthe OPF.

RMS of Calibration minus Assignment in pixels, central row

Orbit UV-1 UV-2 VIS

842 0.010 0.006 0.008
843 0.010 0.007 0.008
1265 0.012 0.007 0.007
3100 0.015 0.006 0.008
3238 0.030 0.009 0.008
3239 0.040 0.009 0.008
3245 0.018 0.005 0.008
3381 0.017 0.009 0.008

AVERAGE OFFSET (Calibration minus Assignment) in pixels, central row

Orbit UV-1 UV-2 VIS

842 -0.006 -0.005 +0.015
843 -0.006 -0.005 +0.016
1265 -0.012 -0.008 +0.015
3100 +0.017 -0.004 +0.018
3238 +0.021 -0.000 +0.019
3239 +0.020 -0.001 +0.019
3245 +0.026 -0.003 +0.019
3381 +0.026 -0.000 +0.019

The images below show the familiar 4 panels, for the central row of a number of different orbits. The similarity
between the four orbits is especially striking for the UV-2 channel. In the lower left of the 4 panels it can be seen
that, apart from the noisy residuals, the difference between the wavelength assignment and the wavelength
calibration shows very similar behaviour across the orbit for all four orbits. This behaviour can also be observed
in the VIS channel, although in this channel the residual noise (when measured in nm, rather than in pixels)
which is slightly larger, somewhat blurs the picture. It was checked whether this could be due to imperfect
correction for the temperature dependence of the wavelength calibration. This seems very unlikely. Temperature
differences within a single orbit during the Earth measurements are on the order of 0.1 K. As shown in TN-613
(the document that describes the temperature dependence of the wavelength calibration) typical shifts in UV-2
and VIS are less than 0.01 pixel per K. Thus, the wavelength shifts due to temperature changes within the orbit
are on the order of 0.001 pixel. This is an order of magnitude smaller than the differences observed here. So,
even if no temperature correction were made, this could not explain the observed behaviour.
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7 Conclusions

From the above results, we can draw the following conclusions.

1. A correction algorithm was implemented in the GDPS (v 0.9.9) and OPF (v 7) to account for the
inhomogeneous slit illumination impact on the wavelength assignment. This algorithm improves the
wavelength assignments considerably.

2. The correction algorithm as currently implemented in the GDPS (v 0.9.9) and OPF (v 7) for the
inhomogeneous slit illumination impact on the wavelength assignment has been tested and has been
observed to perform well. After correction, the remaining RMS difference between calibration and
assignment is sufficiently low for most cases that the accuracy of 0.01 pixel can be obtained.

3. In the step in the wavelength assignment preceding the inhomogeneity correction, the differences are
often still slightly larger than 0.01 pixel.

4. For the UV1 channel no correction is made, and it is seen that the RMS residue is on the order of the

0.02 pixel accuracy required.
The parameters used in the OPF for the wavelength assignment slit inhomogeneity correction are smooth
functions of row number.

W

8 Outlook

Even though the present document shows that the implementation of the correction algorithm in the GDPS
works well, further refined improvements may still be possible. Especially in the UV-2 channel, the correlation
between the measured variations and the applied correction can possibly be improved. However, in order to do
this, a more rigorous study of a number of parameters that influence this needs to be performed. First, the
wavelength calibration algorithm needs to be further validated. Second, the quality of the wavelength calibration
is limited and this in turn limits the accuracy with which the observed variations can be explained, since some of
the signal that one tries to correct, is in fact noise. A third thing to consider is possible non-linear contributions to
the effect. In first order, the larger the inhomogeneity is, the larger the shift, but some non-linear effect may be
present. Another issue to look into in the future is the high frequency variation in the swath direction. The origin
of this effect is currently unknown and for this reason it is at this stage ‘smoothed out’.
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